INTEGRAL CALCULUS AND NUMERICAL TECHNIQUES

Il Semester		Cotogony	Hours / Week			Credits	Maximum Marka		
Course Code A5BS03		Category BSC		T	P	Credits	Maximum Marks		
			3	1		4	30	70	100
 Evaluation Evaluation Fourier se 	epts of finite n of integrals n of the multi eries for perio	differences, operators ar by using numerical metl ple integrals. odic functions. inverse transform of con	hods.			nem.			
UNIT-I	INTERPO	DLATION AND CURV	E FITT	ING					
operators ar interpolation Interpolation CURVE FIT	nd relations , Newton's with unequa TING: Metho	te differences: Forward between them - Differe backward interpolation al intervals – Lagrange's od of least squares - Fit e ^{b x} , y= a x ^b , y = a b ^x by	ence of Gauss interpol ting a s	a poly s's for ation. traight	/nomial ward a line, se	 Missing t backwar cond degree 	erms - N d interpo	Newton's plation fo	forward ormulae.
UNIT-II	NUMERI	CAL TECHNIQUES							
NUMERICAI Trapezoidal NUMERICAI	ethod-Regula L INTEGRAT rule - Simps L SOLUTION	a Falsi method and Newt	pson's	three-e	eighth ru		series m	ethod –	Euler's -
UNIT-III	MULTIPLE INTEGRALS								
	(Cartesian to	ls (Cartesian and polar) o polar) in double integr							
UNIT-IV	FOURIER SERIES								
		ination of Fourier Coeffic Odd periodic continuatio							er series
UNIT-V	FOURIER	R TRANSFORMS							
		(statement)-Fourier sine rties- Inverse transforms					nsforms -	-Fourier s	sine and

- 1. Ervin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S.Grewal, Higher Engineering Mathematics, Khanna publishers, 36th Edition, 2010.

Reference Books:

- 1. G.B.Thomas, calculus and analytical geometry,9th Edition, Pearson Reprint 2006.
- 2. N.P Bali and Manish Goyal ,A Text of Engineering Mathematics,Laxmi publications,2008.

COURSE OUTCOMES

At the end of the course, student will be able to:

- 1. Find Interpolating polynomial for the given tabular data.
- 2. Solve the first order ordinary differential equations using numerical techniques.
- 3. Evaluate multiple integrals.
- 4. Find the Fourier series of the given functions.
- 5. Find the Fourier transforms of the given functions.